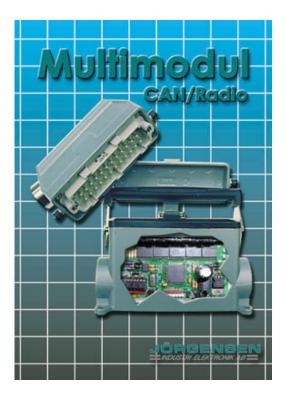
## CanCom MULTIMODUL D/P/R V 4.3 (6

# JÖRGENSEN ••

20 GC 20 GC








| Specifikation          | Specification         |                  |                  |
|------------------------|-----------------------|------------------|------------------|
| Matningsspänning       | Power supply          | 10-30            | VDC              |
| Spänningsrippel        | Voltage ripple        | <3               | V t-t            |
| CAN protokoll          | CAN protocol          | 2.0B             | 150Kbit          |
| CAN drivkrets          | CAN driver            | 82C251           | Philips          |
| I/O adress             | I/O address           | Fixed            | ID               |
| Kabelkontaktdon        | Cable connectors      | Han R23          | Harting          |
| I/O kontaktdon (A/D)   | I/O connectors (A/D)  | H-BE 24          | EPIC             |
| Operativsystem         | Operating system      | CanCom           | CanPro           |
| CPU                    | CPU                   | 98AZ60           | Motorola         |
| Flashminne             | Flash memory          | 60               | kB               |
| Kapsling               | Housing               | Grey             | Aluminium        |
| Egenförbrukning        | Internal consumtion   | 50               | mA               |
| Vikt                   | Mass                  | 1100             | g                |
| Omgivningstemp.        | Operating temp.       | -30 - +80        | Celcius          |
| Omgivningstemp.Radio   | Operating temp.Radio  | -20 - +60        | Celcius          |
| Mått (HxLxB)           | Size (HxLxW)          | 110x144x58       | mm               |
| IP-klass               | IP class              | IP 65            |                  |
| Utgångar               | Output                |                  |                  |
| Antal utgångar         | Number of outputs     | 10+8             | Digital+PWM      |
| Antal I/O              | Number of I/O         | 2                | Digital          |
| Belastbarhet           | Maximum load          | 2000             | mA / IO*         |
| Övertemp skydd.        | Overtemp protected    | +150             | Celcius          |
| Kortslutningsskydd     | Short circuit protect | 8                | А                |
| Återställning av skydd | Reset protection      | Interupt power   | Automatic        |
| Aktiveringstid         | I/O response time     | 20-50            | ms               |
|                        |                       | * Max 10A totall | y for the module |
| <b>1</b> 9             |                       |                  |                  |
| Ingångar               | Inputs                |                  |                  |
| Antal ingångar         | Number of inputs      | 3                | Digital          |

|                 | Ingangar               | Inputs                |                |                |
|-----------------|------------------------|-----------------------|----------------|----------------|
|                 | Antal ingångar         | Number of inputs      | 3              | Digital        |
|                 | Ingångs resistans (DI) | Input resistance (DI) | 3,2            | kohm           |
|                 | ingång aktiv "0"       | Input activated "0"   | <1             | VDC            |
|                 | Ingång aktiv "1"       | Input activated "1"   | >3             | VDC            |
|                 | Buss uppdateringstid   | Bus update time       | 50             | ms             |
|                 | Tid mellan inläsningar | Input capture         | 20-50          | ms             |
|                 | Frekvensingång         | Frequency counter     | 0-255 / 0-3000 | Hz             |
|                 | EMC:                   |                       |                | 2004/108/EG    |
|                 | Emission CISPR 25      | Emission CISPR 25     | EN 55011       | EN 61000-6-4   |
|                 | Immunitet              | Immunity              |                | EN 61000-6-2   |
|                 | ISO 11452-5            | Stripline RF immunity | 150V/m         | 10 KHz-200 MHz |
|                 | ISO 11452-2            | Radiated RF immunity  | 150V/m         | 200-1000 MHz   |
|                 | ISO 11452-2            | Radiated RF immunity  | 125V/m         | 1-4.2 GHz      |
|                 | ISO 11452-2            | Radiated RF immunity  | 50V/m          | 4.2-18 GHz     |
|                 | ISO 7637-2             | 24V system            | Pulse          | 1,2,3a,3b,4,5  |
|                 | ISO 7637-3             | 12-24V system         | Pulse          | 3a,3b          |
| utgåva/issue 10 | EN 61000-4-2           | ESD                   | Air/Contact    | 8/4 KV         |





CanCom<sup>®</sup> PWM-Multimodule V4.30 ID 20-24

The module is moulded in a stable aluminium housing. The result is a hermitically sealed module that is resistant against the hard stresses in mobile environment that includes moisture and vibrations. The module is programmed with *CanPro* V3.xx or V4.xx.

- Built-in radio receiver, radio frequency 433,92 MHz Radio manoeuvring from e. g. HT-12 hand transmitter or with *CanCom*<sup>®</sup> TX card and Bluetooth via external receiver. Antenna connection with BNC contact.
- CAN bus connection for programming and connection to other *CanCom*<sup>®</sup> products.
- 8 PWM outputs (4+4), (with no current feedback)
- 12 digital outputs whereof 2 can be configured as PWM outputs with increase/decrease function.
- 2 of the outputs can also be set as digital inputs.
- 3 Digital inputs, also for measuring frequency 0-255Hz

### IN / OUT puts on CanCom<sup>®</sup> Multi module

| Module id 20: | Radio low 1-8           |
|---------------|-------------------------|
| Module id 21: | Radio high 9-16 (A,B,C) |

The radio is programmed with id 20 and 21 ( in the ID-box in CanPro) When using CanCom TX make sure that the CL is jumpered on the transmitter card. Data that comes into the multi module from the CAN contact with ID 20, 21 has priority before data that comes from the radio input.

NOTE: If the radio is used, then the radio id must be used in any condition for the module. Otherwise it can be strange values in the analyse in CanPro.

| Module ID 22:<br>OUT (I/O):<br>IN:<br>Module pin: | 1<br>2               | 2<br>2<br>12 <sup>1</sup> | 3<br>3<br>14 <sup>1</sup> | 4<br>3                | 5<br>4                   | 6<br>5                   | 7<br>6                    | 8<br>7                |
|---------------------------------------------------|----------------------|---------------------------|---------------------------|-----------------------|--------------------------|--------------------------|---------------------------|-----------------------|
| Module ID 23:<br>PWM OUT (I/O):<br>Module pin:    | <mark>1A</mark><br>8 | <mark>1B</mark><br>10     | <mark>2A</mark><br>11     | <mark>2B</mark><br>13 | <mark>3A</mark><br>15    | <mark>3B</mark><br>16    | <mark>4A</mark><br>17     | <mark>4B</mark><br>18 |
| Module ID 24:<br>OUT (I/O):<br>IN:<br>Module pin: | 1<br>19              | 2<br>20                   | 3 <sup>4</sup><br>21      | 4 <sup>4</sup><br>22  | 5 <sup>2</sup><br>5<br>9 | $6^{2}$<br>$6^{3}$<br>23 | 7 <sup>2</sup><br>7<br>24 | 8 <sup>2</sup>        |

- $^{1}$  = Selectable as in or output.
- $^{2} = 24:5, 6, 7$  can be configured as outputs if you want to use these as "bus flags". 24:8 can only be used as bus flag.
- $^{3}$  = This input cannot be used as frequency input.
- $^{4}$  = The outputs can be used as PWM with INC,DEC function (see special page)
- Module 22-24 have 32 internal flags each.
- Load, Max 2A / output, but not over 10A totally for the whole module.
- Voltage for activation of input is 2–30V, internal resistance is 2,5Kohm (1-12mA)
- The outputs are protected against overload and short circuit.
- The module is terminated with  $120\Omega$  internally.

Power supply and CAN signals are connected to the 4-pole Hirschmann connector

- 1 CAN HI
- 2 CAN LOW
- **3** + 10-30VDC (+ Can also be connected to the **24 pole connector pin 1**)
- 4 ( Can also be connected to the 24 pole connector gable pin. The multi modules housing is also connected to - )

NOTE : There is no – connected to the gable pin for the MARINE version !

#### Settings for PWM outputs in ID23.

| PWM/Danfoss-konfigur | ering                                                                                                                                                                                                                                                          |                                                    |                                                                                                                                        |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| A                    | Boundaries<br>A Centre                                                                                                                                                                                                                                         | 127 🗘 bits                                         | PWM configuration                                                                                                                      |
| Port 1-2<br>Port 3-4 | B Start (1,3,5,7)<br>C Start (2,4,6,8)<br>D Max (1,3,5,7)<br>E Max (2,4,6,8)                                                                                                                                                                                   | 20 🗘 %<br>20 🗘 %<br>80 🗘 %<br>80 🗘 %               | Dutput A<br>1,3,5,7<br>D F                                                                                                             |
| Port 1-2<br>Port 3-4 | Ramp           F         Ramp Acc. (1,3,5,7) 0,0-9,9s           Ramp Ret. (1,3,5,7) 0,0-9,9s         Ramp Acc. (2,4,6,8) 0,0-9,9s           G         Ramp Acc. (2,4,6,8) 0,0-9,9s           Ramp Ret. (2,4,6,8) 0,0-9,9s         Ramp Ret. (2,4,6,8) 0,0-9,9s |                                                    | $ \begin{array}{c c} & H \\ & \downarrow \\ \hline \\$ |
| Port 1-2<br>Port 3-4 | Miscellaneous<br>H Z-Tolerance<br>I Error detection + (0-255)<br>J Error detection - (0-255)<br>Lin/Log/Lin.S/Log.S mode<br>Supply voltage (10-30V)<br>Coil resistance (4> 0hm)<br>255 0hm = uncompenated                                                      | 10<br>245<br>bits 10<br>bits Lin.<br>V 24 V 25 Ohm | G E<br>2,4,6,8<br>Dutput B                                                                                                             |
| Close                | Frequency (30-200 Hz)-<br>is following all the outports                                                                                                                                                                                                        | 156 Hz                                             | Config: A                                                                                                                              |



- The PWM outputs cannot be ramped \*

- The frequency is not adjustable, always 150Hz.

- The supply voltage and the coil resistance has no meaning.

since the PWM outputs are not current compensating.

- The Singel functions are not applicable.

- The PWM outputs is only working in driver selection A.

\* For V35 and later the ramp time for <u>Acceleration</u> can be activated and set between 25ms up to 6,4 seconds by initiating the comment for the module with ¤RAMP,040 The value 001 corresponds to 25ms, this means that in the example below the ramp time is 040x25ms that is 1 second. <u>The ramp time is common for all eight PWM outputs!</u>

| Add to project |           |
|----------------|-----------|
| Module:        | PWM64     |
| ID 1-25        |           |
| Comment:       | ×RAMP,040 |

#### FUNCTION TO SHOW THE PERCENTAGE ACTUATION (V4.3)

From version 4.3 PWM out is stated as a percentage (0-100%) in port 5-8 in the analysis of Canpro. The value specified in port 5 is the value of port 1 and so on.

#### **INC/DEC PWM function in Multimodule V3.xx**

In <u>module address 24</u> 2 outputs can be chosen as PWM outputs by specifying these as –Not connected – in the module configuration.

| 1/0 3 | -Not Connected 🔽 |
|-------|------------------|
| 1/0 4 | -Not Connected 🔽 |

If Digital in, Digital out or Frequency counter is chosen, output 3 and 4 and flags 27-32 will work as usual. (The PWM function is disconnected).

The outputs is controlled from following flags in module address 24

When the conditions in Flag **32** is valid "the comparison point" move against pin 22, with the speed that is chosen through a constant value. The PWM signals actual level is kept when the condition is no longer valid.

When the conditions in Flag **31** is valid "the comparison point" move against pin 21, with the speed that is chosen through a constant value. The PWM signals actual level is kept when the condition is no longer valid.

The speed is 25ms, and the resolution for each PWM output 3060 steps. 3060/constant value\*0.025 = ramp time in seconds from min value to max value *Example: Constant value* 1 = 3060 / 1 x 0.025 = 76.5 seconds ramp time Constant value 8 = 3060 / 8 x 0.025 = 9.5 seconds ramp time *Constant value* 50 = 3060 / 50 x 0.025 = 1.5 seconds ramp time

When the conditions in Flag **30** is valid "the comparison point" is moved to origin right away with no delay, that is the PWM signals actual level is blocked, if the flags value is 1. It is possible to get a ramp down of the signal. If this is desired, put a constant value when the flag is true that corresponds to the fall time, from power supply to 0V, in centiseconds. Example: If the flag is finished with the condition SET CONSTANT VALUE = 20 you get a falltime of 2 seconds.

When the conditions in flag **29** is valid, the flags value will correspond to the Z-tolerance in % of 255. Example: The value  $\underline{10}$  corresponds to 3,9% (10/255\*100)

When the conditions in flag **28** is valid, the flags value will correspond to the start value in % of 255. Example: The value <u>50</u> corresponds to 19,6% PWM (50/255\*100)

When the conditions in flag **27** is valid, the flags value will correspond to the Max value in % of 255. Example: The value <u>200</u> corresponds to 78,4% PWM (200/255\*100)

The flags can be programmed with the modules inputs, radio inputs, timer, follow, set etc. PWM frequency is 150 Hz (not adjustable).

| OUT (I/O):  | 1  | 2  | 3  | 4  | 5      | 6       | 7       | 8 |
|-------------|----|----|----|----|--------|---------|---------|---|
| IN:<br>Pin: | 19 | 20 | 21 | 22 | 5<br>9 | 6<br>23 | 7<br>24 |   |



#### **SPECIAL FUNCTIONS (from V36)**

#### Function SIM (SIMulate module) in ID 23

The function SIM can be used to send out eight flags from ID 23 on the bus with optional ID. To activate the function write the following in the comment for the module with ID 23:  $\square$ SIM,*ID*,*FL* where *ID* is the ID you want the flags to get (01-25). Always written with two numbers and where *FL* is the first flag (of eight in a row) you want to send out (01-25). Always written with two numbers.

Example: Flag 5 and forward you want on ID 9. Put in  $\alpha$ SIM,09,05 in the comment for the module. Then flag 5-12 will be sent out on ID 9 port 1-8.

#### Function COUNT in ID 23 Flag 20 & 21

Flag 20 can be used as up-counter for example for counting numbers or at sequence programming. Each time the flag is true, the flags value is increased with 1 (after 255 the counter is set to 0).

**Resetting:** When flag 21 is true the counter in flag 20 is set to zero. The function is activated by writing COUNT in the comment for flag 20. The counter always starts with 0 after power-up.

A timer on 0,2s is recommended as last instruction in Flag 20 to prevent that the counter counts due to contact bounces from inputs or when the logical conditions is time critical in the sequence programming.

Example below: The counter is increased when input ID22:2 = 1 and is set to zero when input ID22:3 = 1 or the counter is bigger than 25, and an example where the sequence counter is limited to max 10. Take notice of the SIM-function in the comment for the module, which put the counter on the bus in ID1:1.

Up-counting is done with the conditions in Flag 20

| Outp<br>Outp | put conditions                                                      |              |
|--------------|---------------------------------------------------------------------|--------------|
| 💛 Module     | 23 Digital module #SIM,01,20                                        |              |
| OutPort      | 🍠 20 Internal flag COUNT UP 🛛 🖌                                     | Analyse buss |
| Conditions   |                                                                     |              |
|              | ID Type Comment I/O Type Comment<br>module 22 Digital module ♥ port | ✓ 1 ✓        |
| Active if    | module port is                                                      | v v 🍫        |

As above, but the counter does not count higher than 10.

|            | out cond                    | litions                           |      |                          |              |
|------------|-----------------------------|-----------------------------------|------|--------------------------|--------------|
| Module     | 23 Digital mo               | odule ¤SIM,01,20                  | *    | 🛛 🐬 Flag Comment         |              |
| OutPort    | 🐬 20 Internal flag COUNT UP |                                   | *    | 2                        | Analyse buss |
| Conditions |                             |                                   |      |                          |              |
|            |                             | ID Type Comment                   |      | I/O Type Comment         |              |
| Active if  | module                      | 22 Digital module 🗸 🗸             | port | 🗲 2 Digital in 🛛 💙 is 😑  | v 1 v 🍫      |
| OR         | 💌 module                    | 23 Digital module 🕸 SIM,01,20 🗸 🗸 | port | . 🜱 20 COUNT UP 🛛 💌 is 😑 | 🔽 10 🔽 🔌     |
| SET        | 💌 module                    | Constant Value 🗸 🗸                | port | is =                     | 🖂 1  🔽 🍫     |
|            | module                      | ~                                 | port | is 🖌                     | v v 🍫        |

Resetting is done with the conditions in Flag 21

| 20utp      | ut conditions                  |                           |        |              |
|------------|--------------------------------|---------------------------|--------|--------------|
| Module     | 23 Digital module ¤SIM,01,20   | 💌 🛛 📕 🖓 Flag Col          | mment  |              |
| OutPort    | 🐬 21 Internal flag COUNT ZERO  | ✓ <sup>3</sup> √          |        | Analyse buss |
| Conditions |                                |                           |        |              |
|            | ID Type Commer                 | 1/0 Type Commen           | t      |              |
| Active if  | module 22 Digital module       | port 🗲 3 Digital in       | 🗸 is = | 🗸 1 🗸        |
| OR         | module 23 Digital module ×SIM, | 1,20 💌 port 柯 20 COUNT UP | 🖌 is ≻ | 25 💌 🔌       |
|            | Module                         | port                      | 💙 is   | v V          |

#### Function FDIV in ID 22 Port 2&3

If you want to measure frequencies higher than 255 Hz and/or filter the frequency signal, there is a FDIV function for the two counter inputs in ID 22.

The function is activated by ¤FDIV,x,t in the port comment for the actual I/O. The frequency is divided by x and integrated with time t. Valid values for x is 0-99. Valid values for t is 0-255, where 0 means no filter and a higher number means a slower response to frequency changes.

| Ex)              |                   |                                                         |
|------------------|-------------------|---------------------------------------------------------|
| 👫 Module         | Configuration     |                                                         |
| Add to project   |                   | Registered modules                                      |
|                  | New Module        | 20 Radio module<br>21 Radio module<br>22 Digital module |
| Type:            | Digital           | 23 PW/M module           24 Digital module              |
| ID 1-25          | 22 🔹              |                                                         |
| Comment:         |                   |                                                         |
| Port Function    | Port Comment      |                                                         |
| I/O 1 -Not Conn  | ected 🔽           |                                                         |
| I/O 2 Freq. cour | nter 🔽 ¤FDIV,10,3 |                                                         |
| I/0 3 Freq. cour | nter 🔽 🛛 🛛 🗸      |                                                         |
| I/O 4 -Not Conn  | ected 🔽           |                                                         |
| Luc r Not Copp   | ected 🔽           |                                                         |

I/O 2: Frequency measurement 0-2550Hz. A little filtered signal. I/O 3: Frequency measurement 0-1275Hz. Highly filtered signal.

With frequency between 0 and 1000 Hz the duty cycle can vary between 10 and 90% (at ampitude 12 volt). With frequency between 0 and 3000 Hz the duty cycle can vary between 10 and 50% (at ampitude 12 volt).

#### Instruction for installation:

#### Assembly:

The module can be assembled in any optional position. When installing the module, the casing of the module shall have good electrical contact with the base frame of the vehicle. Make sure the cables and connectors seal the module, so that water can not come into the module.

#### **Electrical installation:**

Secure the module with maximum 10 Ampere fuse. The connectors is made for maximum 16 Ampere. The module has built-in CAN termination.

#### Other:

The module is hermetically moulded in PUR. The enclosure is made of powder coated aluminium. The module enclosure is connected to GND.



#### Declaration of Conformity according to the EMC directive 2004/108/EG

Försäkran om överensstämmelse enligt EMC direktivet 2004/108/EG

By signing this document the undersigned declares as manufacture that the equipment in question complies with the protection requirements of directive(s)

Genom att underteckna detta dokument försäkrar undertecknad såsom tillverkare att angiven utrustning uppfyller skyddskraven i rubricerade direktiv

### CanCom Multimodule

| EN 61000-6-4<br>CISPR 25:2002                         | Radiated RF emission<br>Conducted RF emission                                |                  |
|-------------------------------------------------------|------------------------------------------------------------------------------|------------------|
| EN 61000-6-2                                          | Industrial immunity                                                          |                  |
| ISO 11452-5 (95/54/EG)<br>ISO 11452-2 (95/54/EG)      | Stripline RF immunity 10KHz-200MHz<br>Radiated RF immunity 200MHz-1GHz       | 150V/m<br>150V/m |
| ISO 11452-2 (95/54/EG)<br>ISO 11452-2 (95/54/EG)      | Radiated RF immunity 1GHz-4.2GHz<br>Radiated RF immunity 4.2GHz-18GHz        | 125V/m<br>50V/m  |
| ISO 7637-3 puls 3a,3b<br>ISO 7637-2 puls1,2,3a,3b,4,5 | Conducted transients on signal lines<br>Conducted transients on signal lines |                  |
| EN 61000-4-2                                          | ESD (4kV contact, 8kV Air)                                                   |                  |
| EN 61000-4-2<br>EN 61000-4-8                          | ESD (4kV contact, 8kV Air)<br>Magnetic field (50Hz 30A/m)                    |                  |

## CE

Jörgensen Industrielektronik AB Järnvägsgatan 1 535 30 Kvänum Sweden Phone +46 512 92229 Fax +46 512 92115 www.jorgensen-elektronik.se

> 22.09.2008 cloafm Yorgensen

Morten Jörgensen